Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

Evaluation of 48V Technologies to Meet Future CO2 and Low NOx Emission Regulations for Medium Heavy-Duty Diesel Engines

2022-03-29
2022-01-0555
The Environmental Protection Agency (EPA) and California Air Resources Board (CARB) have recently announced rulemakings focused on tighter emission limits for oxides of nitrogen (NOx) from heavy-duty trucks. As part of the new rulemaking CARB has proposed a Low Load Cycle (LLC) to specifically evaluate NOx emission performance over real-world urban and vocational operation typically characterized by low engine loads, thereby demanding the implementation of continuous active thermal management of the engine and aftertreatment system. This significant drop in NOx levels along with continued reduction in the Green House Gas (GHG) limits poses a more significant challenge for the engine developer as the conventional emission reduction approaches for one species will likely result in an undesirable increase in the other species.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Technical Paper

Analysis of the Impact of Production Lubricant Composition and Fuel Dilution on Stochastic Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2019-04-02
2019-01-0256
The occurrence of abnormal combustion events leading to high peak pressures and severe knock can be considered to be one of the main challenges for modern turbocharged, direct-injected gasoline engines. These abnormal combustion events have been referred to as Stochastic Pre-Ignition (SPI) or Low-Speed Pre-Ignition (LSPI). The events are characterized by an undesired, early start of combustion of the cylinder charge which occurs before or in parallel to the intended flame kernel development from the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are often referred to as Mega- or Super-Knock. These heavy knock events lead to strong pressure oscillations which can destroy production engines within a few occurrences. SPI occurs mainly at low engine speed and high engine load, thus limiting the engine operating area that is in particular important to achieve good drivability in downsized engines.
Technical Paper

Experimental and Computational Analysis of Diesel-Natural Gas RCCI Combustion in Heavy-Duty Engines

2015-04-14
2015-01-0849
Substitution of diesel fuel with natural gas in heavy-duty diesel engines offers significant advantages in terms of operating cost, as well as NOx, PM emissions and greenhouse gas emissions. However, the challenges of high THC and CO emissions, combustion stability, exhaust temperatures and pressure rise rates limit the substitution levels across the engine operating map and necessitate an optimized combustion strategy. Reactivity controlled compression ignition (RCCI) combustion has shown promise in regard to improving combustion efficiency at low and medium loads and simultaneously reducing NOx emissions at higher loads. RCCI combustion exploits the difference in reactivity between two fuels by introducing a less reactive fuel, such as natural gas, along with air during the intake stroke and igniting the air-CNG mixture by injecting a higher reactivity fuel, such as diesel, later in the compression stroke.
Technical Paper

Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0720
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Journal Article

Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles

2021-04-06
2021-01-0723
Electrification of heavy-duty trucks has received significant attention in the past year as a result of future regulations in some states. For example, California will require a certain percentage of tractor trailers, delivery trucks and vans sold to be zero emission by 2035. However, the relatively low energy density of batteries in comparison to diesel fuel, as well as the operating profiles of heavy-duty trucks, make the application of electrified powertrain in these applications more challenging. Heavy-duty vehicles can be broadly classified into two main categories; long-haul tractors and vocational vehicles. Long-haul tractors offer limited benefit from electrification due to the majority of operation occurring at constant cruise speeds, long range requirements and the high efficiency provided by the diesel engine.
Technical Paper

Application of 48V Mild-Hybrid Technology for Meeting GHG and Low NOx Emission Regulations for MHD Vehicles

2023-04-11
2023-01-0484
Vehicle OEM’s for MHD applications are facing significant challenges in meeting the stringent 2027 low-NOx and GHG emissions regulations. To meet such challenges, advanced engine and aftertreatment technologies along with powertrain electrification are being applied to achieve robust solutions. FEV has previously conducted model-based assessments to show the potential of 48V engine and aftertreatment technologies to simultaneously meet GHG and low NOx emission standards. This study focuses on evaluating the full potential of 48V electrification technology through addition of 48V P3 hybrid system to the previously developed 48V advanced engine and aftertreatment technology package. Previously, a model-based approach was utilized for selection and sizing of a 48V system-enabled engine and aftertreatment package for class 6-7 MHD application.
Journal Article

Influence of Ethanol Blends on Low Speed Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2017-03-28
2017-01-0687
Modern combustion engines must meet increasingly higher requirements concerning emission standards, fuel economy, performance characteristics and comfort. Especially fuel consumption and the related CO2 emissions were moved into public focus within the last years. One possibility to meet those requirements is downsizing. Engine downsizing is intended to achieve a reduction of fuel consumption through measures that allow reducing displacement while simultaneously keeping or increasing power and torque output. However, to reach that goal, downsized engines need high brake mean effective pressure levels which are well in excess of 20bar. When targeting these high output levels at low engine speeds, undesired combustion events with high cylinder peak pressures can occur that can severely damage the engine. These phenomena, typically called low speed pre-ignition (LSPI), set currently an undesired limit to downsizing.
Journal Article

OBD Diagnostic Strategies for LEVIII Exhaust Gas Aftertreatment Concepts

2015-04-14
2015-01-1040
Upcoming motor vehicle emission regulations, such as California's LEVIII, continue to tighten emission limitations in diesel vehicles. These increasingly challenging emission requirements will be met by improving the combustion process (reducing engine-out emissions), as well as improving the exhaust gas aftertreatment efficiency. Furthermore, intricate On-Board Diagnostics (OBD) systems are required to properly diagnose and meet OBD regulation requirements for complex aftertreatment systems. Under these conditions, current monitoring strategies are unable to guarantee reliable detection of partially failed systems. Additionally, new OBD regulations require aftertreatment systems to be diagnosed as a whole. This paper covers potential OBD strategies for LEVIII aftertreatment concepts with regard to regulation compliance and robustness, while striving to use existing sensor concepts.
Technical Paper

Evaluation of Engine and Aftertreatment Concepts for Proposed Tier 5 off-Road Emission Standards

2024-04-09
2024-01-2628
The global push towards reducing green-house gas and criteria pollutant emissions is leading to tighter emission standards for heavy-duty engines. Among the most stringent of these standards are the California Air Resource Board (CARB) 2024+ HD Omnibus regulations adopted by the agency in August 2020. The CARB 2024+ HD Omnibus regulations require up to 90% reduction in NOx emissions along with updated compliance testing methods for on-road heavy-duty engines. Subsequently, the agency announced development of new Tier 5 standards for off-road engines in November 2021. The Tier 5 standards aim to reduce NOx/PM emissions by 90%/75% respectively from Tier 4 final levels, along with introduction of greenhouse gas emission standards for CO2/CH4/N2O/NH3. Furthermore, CARB is also considering similar updates on compliance testing as those implemented in 2024+ HD Omnibus regulations including, low-load cycle, idle emissions and 3-bin moving average in-use testing.
X